mix

mix150.com MIX150 DOWNLOAD GAMES PLAYSTATION RIP FILMS
Showing posts with label living. Show all posts
Showing posts with label living. Show all posts

Friday, December 16, 2011

A Living Factory?

ScienceDaily (Nov. 2, 2011) — The time it takes for new products to come to market is getting ever shorter. As a consequence, goods are being produced using manufacturing facilities and IT systems that were designed with completely different models in mind. Fraunhofer developers want to make factories smarter so they can react to changes of their own accord.

As soon as DNA is mentioned, we automatically think of biology and living beings. It is the DNA molecule found inside each and every cell that holds the encoded blueprints for humans, animals or plants. But factories too have a master plan of this kind. All modern manufacturing facilities resemble living organisms in their complex structure. And, just as in biology, all their constituent parts are linked to one another and have to be painstakingly coordinated. Now, the Fraunhofer Institute for Optronics, System Technologies and Image Exploitation IOSB in Karlsruhe has taken up the challenge -- together with Fraunhofer IPA in Stuttgart and Fraunhofer IPT in Aachen -- of decoding "factory DNA."

It's a catchy concept, but one that is bound up with solid goals: The aim is to reduce the costs that arise whenever products or machines have to be changed. Up to now, the interplay between a factory's various systems has not been optimal. This problem is at its most obvious when production is being switched to a new item, such as a new model of car. The simple addition of a manipulator to a production line -- or even just an operating system update -- can cause havoc, since the slightest of changes has an impact on the entire operation. What is lacking is an intelligent link between components: the products being manufactured, the facilities doing the manufacturing, and the IT systems controlling things. This is where the experts from the IOSB are stepping in. They want to make the factory smarter by way of new interfaces that will enable it to react more or less autonomously to any changes. In this endeavor the researchers are benefiting from their years of experience of developing software solutions for factories. They are working first and foremost with Daimler AG: Their "ProVis.Agent" production management system manages around 2,000 machines in the plant where the C-Class Mercedes is made.

The key thing is to put in place intelligent links between the manufacturing facilities and the IT systems. Today, if a product is changed, the first step is to rearrange the production line. Only then is the IT system reconfigured. What's more, the details of each machine that belongs on the line have to be entered manually into a computer. This work is tedious and error-prone, involving as it does a multitude of cryptic alphanumeric combinations. "And the trouble is, you only notice any mistakes when the line is back up and running," says Dr. Olaf Sauer, division director at the IOSB. Thankfully, the research scientist and his team have managed to come up with a more elegant approach: Now employees can simply plug in a data cable and that's that. The magic words are "plug and work."

Home computing underwent a similar development. In the past, you had to install the appropriate driver before you could connect a peripheral device. Nowadays, all you need to do is plug in a USB cable. The new device uses this to communicate with the PC and to identify itself. This is effectively the approach that is set to be taken in modern factories, even if things there are a little more complex. For instance, a factory will often have many different kinds of machine built by many different companies. And the sector is nowhere near having standardized software -- or even a standard software language. So the researchers have invented and patented a digital translator to take the various digital device descriptions and convert them into a standard machine language called Computer Aided Engineering Exchange (CAEX). This information is then sent to a special data storage system, which is also being patented by the Institute. "Together, these two components are enough to make a simple USB-type solution feasible," says Sauer. "Once the data have started to flow, the computer can design a process control plan for the new production line unaided." The IT specialists have proved that the procedure works by putting together a miniature model facility comprising four components: a conveyor belt, a turntable, a testing device, and a further conveyor belt. Work has already started on an initial real-world application.

Recommend this story on Facebook, Twitter,
and Google +1:

Other bookmarking and sharing tools:

Story Source:

The above story is reprinted from materials provided by Fraunhofer-Gesellschaft.

Note: Materials may be edited for content and length. For further information, please contact the source cited above.

Note: If no author is given, the source is cited instead.

Disclaimer: Views expressed in this article do not necessarily reflect those of ScienceDaily or its staff.


View the original article here

Wednesday, October 12, 2011

Proton-based transistor could let machines communicate with living things

ScienceDaily (Sep. 21, 2011) — Human devices, from light bulbs to iPods, send information using electrons. Human bodies and all other living things, on the other hand, send signals and perform work using ions or protons.

Materials scientists at the University of Washington have built a novel transistor that uses protons, creating a key piece for devices that can communicate directly with living things. The study is published online in the interdisciplinary journal Nature Communications.

Devices that connect with the human body's processes are being explored for biological sensing or for prosthetics, but they typically communicate using electrons, which are negatively charged particles, rather than protons, which are positively charged hydrogen atoms, or ions, which are atoms with positive or negative charge.

"So there's always this issue, a challenge, at the interface -- how does an electronic signal translate into an ionic signal, or vice versa?" said lead author Marco Rolandi, a UW assistant professor of materials science and engineering. "We found a biomaterial that is very good at conducting protons, and allows the potential to interface with living systems."

In the body, protons activate "on" and "off" switches and are key players in biological energy transfer. Ions open and close channels in the cell membrane to pump things in and out of the cell. Animals including humans use ions to flex their muscles and transmit brain signals. A machine that was compatible with a living system in this way could, in the short term, monitor such processes. Someday it could generate proton currents to control certain functions directly.

A first step toward this type of control is a transistor that can send pulses of proton current. The prototype device is a field-effect transistor, a basic type of transistor that includes a gate, a drain and a source terminal for the current. The UW prototype is the first such device to use protons. It measures about 5 microns wide, roughly a twentieth the width of a human hair.

"In our device large bioinspired molecules can move protons, and a proton current can be switched on and off, in a way that's completely analogous to an electronic current in any other field effect transistor," Rolandi said.

The device uses a modified form of the compound chitosan originally extracted from squid pen, a structure that survives from when squids had shells. The material is compatible with living things, is easily manufactured, and can be recycled from crab shells and squid pen discarded by the food industry.

First author Chao Zhong, a UW postdoctoral researcher, and second author Yingxin Deng, a UW graduate student, discovered that this form of chitosan works remarkably well at moving protons. The chitosan absorbs water and forms many hydrogen bonds; protons are then able to hop from one hydrogen bond to the next.

Computer models of charge transport developed by co-authors M.P. Anantram, a UW professor of electrical engineering, and Anita Fadavi Roudsari at Canada's University of Waterloo, were a good match for the experimental results.

"So we now have a protonic parallel to electronic circuitry that we actually start to understand rather well," Rolandi said.

Applications in the next decade or so, Rolandi said, would likely be for direct sensing of cells in a laboratory. The current prototype has a silicon base and could not be used in a human body. Longer term, however, a biocompatible version could be implanted directly in living things to monitor, or even control, certain biological processes directly.

The other co-author is UW materials science and engineering graduate student Adnan Kapetanovic. The research was funded by the University of Washington, a 3M Untenured Faculty Grant, a National Cancer Institute fellowship and the UW's Center for Nanotechnology, which is funded by the National Science Foundation.

Recommend this story on Facebook, Twitter,
and Google +1:

Other bookmarking and sharing tools:

Story Source:

The above story is reprinted (with editorial adaptations by ScienceDaily staff) from materials provided by University of Washington. The original article was written by Hannah Hickey.

Journal Reference:

Chao Zhong, Yingxin Deng, Anita Fadavi Roudsari, Adnan Kapetanovic, M.P. Anantram, Marco Rolandi. A polysaccharide bioprotonic field-effect transistor. Nature Communications, 2011; 2: 476 DOI: 10.1038/ncomms1489

Note: If no author is given, the source is cited instead.

Disclaimer: Views expressed in this article do not necessarily reflect those of ScienceDaily or its staff.


View the original article here